
Model Checking of Threshold-based
Fault-tolerant Distributed Algorithms

Helmut Veith

joint work with

Annu Gmeiner Igor Konnov Ulrich Schmid Josef Widder

Administrator
Typewritten Text
and beyond ...

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text

Our journey

fault-tolerant
distributed algorithms

small sizes

all sizes

technical
background

repository
competition

distributed
algorithms

Byzantine model checker

Helmut Veith 2 of 48

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text

Distributed Systems

1
1
4

7
.1

A
ss
es
si
n
g
a
n
d
va
li
d
a
ti
n
g
th
e
st
a
n
d
a
rd

n
od
e
H
IT

S
d
es
ig
n

F
ig
u
re

7.
1:

D
A
R
T
S
p
ro
to
ty
p
e
b
oa
rd
,
co
m
p
ri
si
n
g
8
in
te
rc
on

n
ec
te
d
H
IT

S
ch
ip
s

Are they always working?

Helmut Veith 3 of 48

No. . . some failing systems

Ariane 501 maiden flight (1996)

primary/backup, i.e., 2 replicated computers

both run into the same overflow

Qantas Airbus in-flight Learmonth upset (2008)

1 out of 3 replicated components failed

computer initiated dangerous altitude drop

Helmut Veith 4 of 48

Why do they fail?

1. Design & implementation bugs

approach: find the bugs and fix them

tools: model checking, static analysis

[xkcd.com/292]
2. Runtime faults

outside of control of designer/developer

approach: replicate & coordinate

tools: fault-tolerant distributed algorithms

are they always working?

Driscoll (Honeywell)

Helmut Veith 5 of 48

Why do they fail?

1. Design & implementation bugs

approach: find the bugs and fix them

tools: model checking, static analysis

[xkcd.com/292]
2. Runtime faults

outside of control of designer/developer

approach: replicate & coordinate

tools: fault-tolerant distributed algorithms

are they always working?
Driscoll (Honeywell)

Helmut Veith 5 of 48

Fault-tolerant distributed algorithms

n

? ? ?
t f

n processes communicate by sending messages

all processes know that at most t of them might be faulty

f are actually faulty (and n > 3t ∧ t ≥ f ≥ 0)
Helmut Veith 7 of 48

Fault-tolerant distributed algorithms

n

? ? ?
t

f

n processes communicate by sending messages

all processes know that at most t of them might be faulty

f are actually faulty (and n > 3t ∧ t ≥ f ≥ 0)
Helmut Veith 7 of 48

Fault-tolerant distributed algorithms

n

? ? ?
t f

n processes communicate by sending messages

all processes know that at most t of them might be faulty

f are actually faulty (and n > 3t ∧ t ≥ f ≥ 0)
Helmut Veith 7 of 48

Reliable Broadcast by Srikanth & Toueg 87

i f initiator then send INIT to all;

while true do
i f received INIT from at least 1 distinct processes
then send ECHO to all;

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all;

i f received ECHO from at least n - t distinct processes
then accept;

od

It works correctly when:

out of n > 3t processes, f ≤ t processes are faulty (Byzantine)

Helmut Veith 8 of 48

Reliable broadcast: properties

Unforgeability: If no correct process receives “broadcast”,
then no correct process ever accepts.

Correctness: If all correct processes receive “broadcast”,
then at least one correct process accepts.

Relay: Whenever a correct process accepts,
eventually all correct processes accept.

Helmut Veith 10 of 48

Our journey

fault-tolerant
distributed algorithms

small sizes

all sizes

technical
background

repository
competition

distributed
algorithms

Byzantine model checker

Helmut Veith 11 of 48

What do we want to verify?

The algorithms come in pseudo code and English:

is it ok to assign Byzantine processes
right in the initial state?

yes, it is folklore knowledge

We chose PROMELA as a modeling language:
we can use SPIN

model checking community knows it

it does not shock people from distributed algorithms

Promela forces us to do a lot of hacking

Helmut Veith 12 of 48

What do we want to verify?

The algorithms come in pseudo code and English:

is it ok to assign Byzantine processes
right in the initial state?

yes, it is folklore knowledge

We chose PROMELA as a modeling language:
we can use SPIN

model checking community knows it

it does not shock people from distributed algorithms

Promela forces us to do a lot of hacking

Helmut Veith 12 of 48

Encoding reliable broadcast in Promela
Parametric Promela code:

int nsnt = 0;
active[n-f] proctype P() {
byte pc, nrcvd;
byte npc, nnrcvd;
...
if
:: nrcvd + 1 < nsnt + f

-> nrcvd++;
:: skip;
fi;
if
:: nnrcvd >= n - t

-> npc = ACCEPT;
:: nnrcvd < n - t
&& nnrcvd >= t + 1
-> npc = SENT; nsnt++;

...
fi;

Similar TLA+ code:

constants n, t , f
variable pc, rcvd , sent

vars
∆
= 〈pc, rcvd , sent〉

Receive(self)
∆
=

∃ r ∈ subset (P × {“ECHO”}) :
∧ r ⊆ sent ∪ {〈p, “ECHO”〉 : p ∈ Faulty}
∧ rcvd [self] ⊆ r
∧ rcvd ′ = [rcvd except ! [self] = r]

UponNonFaulty(self)
∆
=

∧ pc[self] 6= “SENT”
∧ Cardinality(rcvd ′[self]) ≥ t + 1
∧ Cardinality(rcvd ′[self]) < n − t
∧ pc′ = [pc except ! [self] = “SENT”]
∧ sent ′ = sent ∪ {〈self , “ECHO”〉}

UponAccept(self)
∆
=

∧ pc[self] = “SENT”
∧ Cardinality(rcvd ′[self]) ≥ n − t
∧ pc′ = [pc except ! [self] = “ACCEPT”]
∧ sent ′ = sent

. . .

1

Helmut Veith 13 of 48

Checking small instances

We consider a number of threshold-based algorithms.

1. Reliable broadcast for Byzantine faults (BYZ)
2. Reliable broadcast for omission faults (OMIT)
3. Reliable broadcast for symmetric faults (SYMM)
4. Reliable broadcast for clean crashes (CLEAN)

[Srikanth & Toueg 87, STRB]

5. Folklore reliable broadcast for clean crashes
[Chandra & Toueg 96, FRB]

6. Asynchronous Byzantine agreement
[Bracha & Toueg 85, ABA]

7. Condition-based consensus (crash faults)
[Mostéfaoui et al. 01, CBC]

Helmut Veith 14 of 48

Reference: other algorithms used later

9. Non-blocking atomic commit
[Raynal 97, NBAC]

10. Non-blocking atomic commit with failure detectors
[Guerraoui 01, NBACG]

11. Folklore one-step consensus
[Dobre, Suri 06, CF1S]

12. Consensus in one communication step
[Brasileiro 01, C1CS]

13. BOSCO: One-step Byzantine Asynchronous Consensus
[Song, von Renesse 08, BOSCO]

Helmut Veith 15 of 48

Experiments with small instances

Algorithm Fault Parameters Resilience Properties Time

1. STRB BYZ n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.

1. STRB BYZ n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.

1. STRB BYZ n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.

2. STRB OMIT n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.

2. STRB OMIT n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.

3. STRB SYMM n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.

3. STRB SYMM n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.

4. STRB CLEAN n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.

5. FRB CRASH n = 2 — U, C, R 1 sec.

6. ABA BYZ n = 5, t = 1, f = 1 n > 3t R 131 sec.

6. ABA BYZ n = 5, t = 1, f = 2 n > 3t R 1 sec.

6. ABA BYZ n = 5, t = 2, f = 2 n > 3t R 1 sec.

7. CBC CRASH n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.

7. CBC CRASH n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.
Helmut Veith 16 of 48

Adding more processes

Checking reliable broadcast with one Byzantine fault in Spin:

Time (logscale)

0.01

0.1

1

10

100

1000

10000

100000

4 5 6 7 8 9

number of processes, n

Memory (MB, logscale, ≤ 192 GB)

 128
 256
 512
1024
2048
4096
8192

16384
32768
65536

131072

4 5 6 7 8 9

number of processes, n

Can general-purpose model checkers scale up to 1000 processes?

We focus on fault-tolerant distributed algorithms
Helmut Veith 17 of 48

Checking for all sizes

Time (logscale)

0.01

0.1

1

10

100

1000

10000

100000

4 5 6 7 8 9

number of processes, n

Memory (MB, logscale, ≤ 192 GB)

 128
 256
 512
1024
2048
4096
8192

16384
32768
65536

131072

4 5 6 7 8 9

number of processes, n

Checking once and for all sizes faster

than checking a system of 7 processes

Helmut Veith 18 of 48

Our journey

fault-tolerant
distributed algorithms

small sizes

all sizes

technical
background

predicate
abstraction

model checking
for all sizes

Byzantine model checker

TLA+

Helmut Veith 19 of 48

Our mathematical tools
abstraction symmetry

(•, •, •)

(•, •, •)

(•, •, •)

(2•,1•)

partial order reduction

x++ y++

y++ x++

acceleration

x++

Proc 1

x++

Proc 2

x++

Proc 3

x+=3

Helmut Veith 20 of 48

Our mathematical tools
abstraction symmetry

(•, •, •)

(•, •, •)

(•, •, •)

(2•,1•)

partial order reduction

x++ y++

y++ x++

acceleration

x++

Proc 1

x++

Proc 2

x++

Proc 3

x+=3

Helmut Veith 20 of 48

Our mathematical tools
abstraction symmetry

(•, •, •)

(•, •, •)

(•, •, •)

(2•,1•)

partial order reduction

x++ y++

y++ x++

acceleration

x++

Proc 1

x++

Proc 2

x++

Proc 3

x+=3

Helmut Veith 20 of 48

Our mathematical tools
abstraction symmetry

(•, •, •)

(•, •, •)

(•, •, •)

(2•,1•)

partial order reduction

x++ y++

y++ x++

acceleration

x++

Proc 1

x++

Proc 2

x++

Proc 3

x+=3

Helmut Veith 20 of 48

Stacks of techniques
FMCAD’13 CONCUR’14 CAV’15

data abstraction

symmetry

counter
abstraction

state enumeration
or BDDs

SPIN, NuSMV-BDD

data abstraction

symmetry

counter
abstraction

partial orders
&

acceleration

bounded
model checking

NuSMV-SAT

data abstraction

symmetry

counters in SMT

partial orders
&

acceleration

bounded
model checking

SMT
Helmut Veith 21 of 48

Our benchmarks

Now we can verify safety of the parameterized algorithms:

Reliable broadcast (FRB, STRB, ABA)

Non-blocking atomic commit with failure detectors (NBAC, NBACG)

Condition-based consensus (CBC)

One-step consensus (CF1S, C1CS, BOSCO)

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

85

ABA

87

STRB

96

FRB

97
NBAC

01

CBC, C1CS

02

NBACG

06

CF1S

08

BOSCO

Helmut Veith 22 of 48

Our recent breakthroughs (time)

1 s

10 s

100 s

10 m

1 h

5 h

1 d

 0 5 10 15 20 25

Number of checked benchmarks

Time to verify an instance, sec. (logscale)

SMT @ cav15
NuSMV-SAT @ concur14
NuSMV-BDD @ fmcad13

SPIN @ fmcad13

Helmut Veith 23 of 48

Our recent breakthroughs (memory)

0.1 GB

1 GB

10 GB

32 GB

 0 5 10 15 20 25

Number of checked benchmarks

Memory to verify an instance (logscale)

SMT @ cav15
NuSMV-SAT @ concur14
NuSMV-BDD @ fmcad13

SPIN @ fmcad13

Helmut Veith 24 of 48

Byzantine model checker

A virtual machine with full setup:

the tool in OCaml

our benchmarks in parametric Promela

[http://forsyte.at/software/bymc]

Helmut Veith 25 of 48

http://forsyte.at/software/bymc/

Our journey

fault-tolerant
distributed algorithms

small sizes

all sizes

technical
background

repository
competition

distributed
algorithms

Byzantine model checker

Helmut Veith 26 of 48

Position in the stack

data abstraction

symmetry

counter
abstraction

partial orders
&

acceleration

Helmut Veith 27 of 48

Data abstraction

Concrete values are not important

Thresholds are essential:

0, 1, t + 1, n − t

Intervals with symbolic boundaries:
• I0 = [0,1)

• I1 = [1, t + 1)

• It+1 = [t + 1,n − t)
• In−t = [n − t ,∞)

int nsnt = 0;
active[n-f] proctype P() {
byte pc, nrcvd;
byte npc, nnrcvd;
...
if
:: nrcvd + 1 < nsnt + f

-> nrcvd++;
:: skip;
fi;
if
:: nnrcvd >= n - t

-> npc = ACCEPT;
:: nnrcvd < n - t
&& nnrcvd >= t + 1
-> npc = SENT; nsnt++;

...
fi;

Helmut Veith 28 of 48

Abstract operations on message counters

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1 It+1 In−t

It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x

is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Helmut Veith 29 of 48

Abstract operations on message counters

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−t

It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Helmut Veith 29 of 48

Abstract operations on message counters

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1 It+1 In−t

It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1,

is abstracted as:
x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Helmut Veith 29 of 48

Abstract operations on message counters

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1 . . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Helmut Veith 29 of 48

Abstract operations on message counters

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Helmut Veith 29 of 48

Abstract operations on message counters

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1)

. . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .

∨x = In−t ∧ x ′ = In−t

Helmut Veith 29 of 48

Abstract operations on message counters

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1)

. . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t)

. . .

∨x = In−t ∧ x ′ = In−t

Helmut Veith 29 of 48

Position in the stack

data abstraction

symmetry

counter
abstraction

partial orders
&

acceleration

Helmut Veith 30 of 48

Symmetry and counter representation

Our benchmarks do not use process ids

These transitions are indistinguishable:

(•, •, •, •, •)

(•, •, •, •, •)

(•, •, •, •, •)

(•, •, •, •, •)

We just count processes in different states:

(3•,2•)

(2•,3•)
OR

(κ• 7→ 3, κ• 7→ 2) (κ• 7→ 2, κ• 7→ 3)

κ•--, κ•++

Helmut Veith 31 of 48

Position in the stack

data abstraction

symmetry

counter
abstraction

partial orders
&

acceleration

Helmut Veith 32 of 48

Counter abstraction

Abstract counters over the intervals,

e.g., {[0,1), [1, t + 1), [t + 1,n − t), [n − t ,∞)}

0 1 t + 1 n − t above
· · ·

κ++
κ++

κ++ κ++
κ++ κ++

A global state looks like (κ• 7→ I1, κ• 7→ It+1)

Helmut Veith 33 of 48

Soundness of the abstractions

If the model checker tells us that there is no bug in the abstract model,

then there is no bug for any system size.

This works both for safety and liveness.

Faulty processes cannot forge broadcast

Correct processes eventually agree on broadcast

Formally proven in [FMCAD’13].

Helmut Veith 34 of 48

Position in the stack

data abstraction

symmetry

counter
abstraction

partial orders
&

acceleration

Helmut Veith 35 of 48

Partial orders and acceleration

a1

a2 a1

a1 a2

a3

a2

a2

a3

a3

2× a1
2× a2

2× a3

We can compute a bound on the diameter of the accelerated system

Theorem [CONCUR’14]

The bound depends only on the process code, not the parameter values

Result: safety bugs are always caught with bounded model checking

Helmut Veith 36 of 48

Bounded executions in SMT

a1

a2 a1

a1 a2

a3

a2

a2

a3

a3

2× a1
2× a2

2× a3

fixed parameters: a representative (accelerated) execution

all parameters: a pattern to generate the representative executions

a∗1 a∗2 a∗3 captures a2
1 a2

2 a2
3 and a3

1 a3
2 a3

3

SMT solver checks, whether a pattern generates a bad execution

Z3, MathSAT, etc.
Helmut Veith 37 of 48

Complete parameterized reachability

Sound and complete algorithm for parameterized reachability

Let Φ be the set of all guards in the process code,

e.g., Φ = {nsnt ≥ t + 1,nsnt ≥ n − t}

and R be the set of all process transitions

Theorem [CAV’15]

There is a set of at most |Φ|! patterns generating all representative executions

Each pattern is no longer than (3 · |Φ|+ 2) · |R|

Helmut Veith 38 of 48

Distributed reachability checking?

x ≥ t + 1

x ≥ n − t

(1)

(2)

(3)

We enumerate patterns and check them in SMT solvers:

they can be tried independently, on different machines

We have not tried it yet

Checking Paxos in the cloud?
Helmut Veith 40 of 48

Our journey

fault-tolerant
distributed algorithms

small sizes

all sizes

technical
background

repository
competition

distributed
algorithms

Byzantine model checker

Helmut Veith 41 of 48

66 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

contributed articles
DOI:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
MARC BROOKER, AND MICHAEL DEARDEUFF

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched S3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.3 Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.4

S3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant dis-
tributed algorithms for replication,
consistency, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
tem is a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-
tinely use deep design reviews, code
reviews, static code analysis, stress
testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
lions of requests per second.

How Amazon
Web Services
Uses Formal
Methods

 key insights
˽˽ Formal methods find bugs in system

designs that cannot be found through
any other technique we know of.

˽˽ Formal methods are surprisingly feasible
for mainstream software development
and give good return on investment.

˽ At Amazon, formal methods are routinely
applied to the design of complex
real-world software, including public
cloud services.

Distributed Algorithms and Model Checking

Distributed Algorithms and Model Checking

“Computer-hindered verification”

Distributed Algorithms and Model Checking

Computer-readable models?

Distributed Algorithms and Model Checking

Formalization of Distributed Algorithms
Input/Output-Automata
Temporal Logic of Actions

Distributed Algorithms and Model Checking

Formalization of Distributed Algorithms
Input/Output-Automata
Temporal Logic of Actions

Model Checking for Distributed Algorithms
Restricted to small class of program models.
Strong emphasis on concurrent programs.

Distributed Algorithms and Model Checking

Formalization of Distributed Algorithms
Input/Output-Automata
Temporal Logic of Actions

Vision
Parameterized model checking and synthesis
for large classes of realistic distributed algorithms

Model Checking for Distributed Algorithms?
Restricted to small class of program models.
Strong emphasis on concurrent programs.

Technical Challenges
from Distributed Algorithms

1. Parametrization
2. High degree of nondeterminism
3. Message passing
4. Fault tolerance
5. Communication topology
6. Partial synchrony
7. Liveness
8. Process IDs
9. Data Structures
10. Signatures
11. Real time and hybrid systems
12. Probabilistic behavior

Technical Challenges
from Distributed Algorithms

1. Parametrization
2. High degree of nondeterminism
3. Message passing
4. Fault tolerance
5. Communication topology
6. Partial synchrony
7. Liveness
8. Process IDs
9. Data Structures
10. Signatures
11. Real time and hybrid systems
12. Probabilistic behavior

Computer-Readable Models

Clear semantics and assumptions
Supports transition to industry
Facilitates verification, synthesis, testing

Clear interface to distributed algorithms
Challenge and benchmark examples
Facilitates comparison of tools

Repository

Competition

Model Checking Distributed
Algorithms

Computer-Readable Models

Clear semantics and assumptions
Supports transition to industry
Facilitates verification, synthesis, testing etc.

Clear interface to distributed algorithms
Challenge and benchmark examples
Facilitates comparison of tools

Repository

Competition

Model Checking Distributed
Algorithms

Questions for the Lunch Break

Format?
Standards?
Organization?
COST Action?
…

Computer-Readable Models

Clear semantics and assumptions
Supports transition to industry
Facilitates verification, synthesis, testing etc.

Clear interface to distributed algorithms
Challenge and benchmark examples
Facilitates comparison of tools

Repository

Competition

Model Checking Distributed
Algorithms

Thank you for your attention!

	talkMadrid2
	Madrid beyond
	�Distributed Algorithms and Model Checking�
	�Distributed Algorithms and Model Checking�
	�Distributed Algorithms and Model Checking�
	�Distributed Algorithms and Model Checking�
	�Distributed Algorithms and Model Checking�
	�Distributed Algorithms and Model Checking�
	Technical Challenges �from Distributed Algorithms
	Technical Challenges �from Distributed Algorithms
	Computer-Readable Models
	Computer-Readable Models
	Computer-Readable Models
	

